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Anisotropic ballistic deposition model with links to the Ulam problem
and the Tracy-Widom distribution
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We compute exactly the asymptotic distribution of scaled height in a~111!-dimensional anisotropic ballistic
deposition model by mapping it to the Ulam problem of finding the longest nondecreasing subsequence in a
random sequence of integers. Using the known results for the Ulam problem, we show that the scaled height
in our model has the Tracy-Widom distribution appearing in the theory of random matrices near the edges of
the spectrum. Our result supports the hypothesis that various growth models in~111! dimensions that belong
to the Kardar-Parisi-Zhang universality class perhaps all share the same universal Tracy-Widom distribution for
the suitably scaled height variables.
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Growth processes are ubiquitous in nature. The past
decades have seen extensive research on a wide varie
both discrete and continuous growth models@1–3#. A large
class of these growth models such as the Eden model@4#,
restricted solid on solid~RSOS! models@5#, directed poly-
mers@3#, polynuclear growth models~PNG! @6# and ballistic
deposition~BD! models @7# are believed to belong to th
same universality class as that of the Kardar-Parisi-Zh
~KPZ! equation describing the growth of interface fluctu
tions @8#. This universality is, however, somewhat restrict
in the sense that it refers only to the width or the seco
moment of the height fluctuations characterized by two in
pendent exponents~the growth exponentb and the dynami-
cal exponentz) and the associated scaling function. Mor
over, even this restricted universality is established mo
numerically. Only in very few special discrete~111!-D mod-
els, where D represents the dimension exponentsb51/3 and
z53/2 can be computed exactly via the Bethe ansatz te
nique @9#. A natural and important question is whether th
universality can be extended beyond the second momen
height fluctuations. For example, is the full distribution
the height fluctuations~suitably scaled! universal, i.e., is it
the same for different growth models belonging to the K
class? Moreover, the KPZ-type equations are usually att
uted to models with small gradients in the height profile a
the question whether the models with large gradients~such
as the BD models! belong to the KPZ universality class
still open. The connection between the discrete BD mod
and the continuum KPZ equation has recently been el
dated in Ref.@10#.

Recently Pra¨hofer and Spohn@11# found an exact map
ping between a specific PNG model and the so-called lon
increasing subsequence~LIS! problem, also known as th
Ulam problem. The LIS problem was first raised by Ulam
the early 1960s@12#, then the interest in it reappeared in th
mathematical literature in 1970s following the work of Ve
shik and Kerov@13#. The exact mapping of PNG to LIS an
the subsequent utilization of the exact results available
the LIS problem allowed Pra¨hofer and Spohn to find~besides
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the exact KPZ growth exponentb51/3! the exact asymptotic
height distribution in the PNG model@11#. This distribution
turned out to be the well known Tracy-Widom distributio
appearing in the theory of edge states of random matr
@14#. Around the same time, Johansson showed rigorou
@15# that a specific~111!-D directed polymer model, be
lieved to be in the KPZ universality class, also has the sa
Tracy-Widom distribution for the scaled height~energy! vari-
able. Gravneret al. found the same Tracy-Widom distribu
tion in another class of~111!-dimensional growth models
which they called ‘‘oriented digital boiling’’ model@16#. It
would be interesting to know whether other growth mod
such as the RSOS or the BD ones, which are believed to
in the KPZ universality class as far as the second momen
concerned, also share the same Tracy-Widom distribution
the scaled height.

The purpose of this paper is to present a BD model wh
can be mapped exactly to the LIS problem and hence sh
the same Tracy-Widom distribution as the PNG model. T
exact result, in combination with the results of Re
@11,15,16#, then lends support to the hypothesis that perh
all these different growth models, at least in~111! dimen-
sions, share the same universal Tracy-Widom distribution
scaled height. This hypothesis, if true, puts the universa
on a much stronger footing going beyond just the seco
moment. Incidentally, to our knowledge, our model is t
first exact solution for the full asymptotic height distributio
of BD-type systems.

Before describing our model, it is worth summarizing t
main results for the LIS problem that we use later. Take a
of n integers$1,2,3, . . . ,n%. Consider all then! possible
permutations of this sequence. For any given permutat
let us find all possible increasing subsequences~terms of
a subsequence need not necessarily be consecutive elem!
and from them find out the longest one. For examp
take n510 and consider a particular permutatio
$8,2,7,1I ,3I ,4I ,10,6I ,9I ,5%. From this sequence, one can form se
eral increasing subsequences such as$8,10%, $2,3,4,10%,
$1,3,4,10%, etc. The longest one of all such subsequence
©2004 The American Physical Society03-1
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either$1,3,4,6,9% as shown by the underscores or$2,3,4,6,9%.
The lengthl n of the LIS ~in our examplel n55) is a random
variable as it varies from one permutation to another. In
Ulam problem one considers all then! permutations to be
equally likely. Given this uniform measure over the space
permutations, what is the statistics of the random variablel n?
Ulam found numerically for the average length^ l n& the
asymptotic behavior̂l n&;cAn for largen. Later this result
was established rigorously by Hammersley@17# and the con-
stantc52 was found by Vershik and Kerov@13#. Recently,
in a seminal paper, Baik, Deift and Johansson~BDJ! @18#
derived the full distribution ofl n for large n. In particular,
they showed thatl n→2An1n1/6x for largen, where the ran-
dom variablex has a limitingn-independent distribution,

Prob~x<x!5FGUE~x!, ~1!

which happens to be the Tracy-Widom distribution for t
largest eigenvalue of a random matrix drawn from t
Gaussian unitary ensemble~GUE! @14#. They also showed
that when the sequence lengthn itself is a random variable
drawn from a Poisson distribution with mean^n&5l, the
length of the LIS converges for largel to

l l→2Al1l1/6x, ~2!

wherex has the Tracy-Widom distribution. The fixedn and
the fixedl ensembles are like the canonical and the gra
canonical ensembles in statistical mechanics. The deta
form of the Tracy-Widom distribution is rather complicate
and not very illuminating~see Ref.@14# for a picture!. The
BDJ results led to an avalanche of subsequent mathema
works @19#.

In our ~111!-D BD model columnar growth occurs se
quentially on a linear substrate consisting ofL columns with
free boundary conditions. The timet is discrete and is in-
creased by 1 with every deposition event. We first consi
the flat initial condition, i.e., an empty substrate att50.
Other initial conditions will be treated later. At any stage
the growth, a column~say thekth column! is chosen at ran-
dom with probability p51/L and a ‘‘brick’’ is deposited
there which increases the height of this column by one u
Hk→Hk11. Once this brick is deposited, it screens all t
sites at the same level in all the columns to its right fro
future deposition, i.e., the heights at all the columns to
right of thekth column must be strictly greater than or equ
to Hk11 at all subsequent times. For example, in Fig. 1,
first brick ~denoted by 1! gets deposited att51 in the 4th
column and it immediately screens all the sites to its rig
Then the second brick~denoted by 2! gets deposited att
52 again in the same 4th column whose height now
comes 2 and thus the heights of all the columns to the r
of the 4th column must be>2 at all subsequent times and s
on. Formally such growth is implemented by the followin
update rule. If thekth site is chosen at timet for deposition,
then

Hk~ t11!5max$Hk~ t !,Hk21~ t !, . . . ,H1~ t !%11. ~3!
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The model is anisotropic and evidently even the aver
height profile^Hk(t)& depends nontrivially on both the co
umn numberk and time t. Our goal is to compute the
asymptotic height distributionPk(H,t) for large t.

It is easy to find the height distributionP1(H,t) of the
first column, since the height there does not depend on
other column. At any stage, the height in the first colum
either increases by one unit with probabilityp51/L ~if this
column is selected for deposit! or stays the same with prob
ability 12p. ThusP1(H,t) is simply the binomial distribu-
tion, P1(H,t)5(H

t )ph(12p) t2H with H<t. The average
height of the first column thus increases as^H1(t)&5pt for
all t and its variance is given bys1

2(t)5tp(12p). While the
first column is thus trivial, the dynamics of heights in oth
columns is nontrivial due to the right-handed infinite ran
interactions between the columns. For convenience, we
sequently measure the height of any other column with
spect to the first one. Namely, by heighthk(t) we mean the
height difference between the (k11) th column and the first
one,hk(t)5Hk11(t)2H1(t), so thath0(t)50 for all t.

To make progress for columnsk.0, we first consider a
~211!-D construction of the heap as shown in Fig. 2,
adding an extra dimension indicating the timet. In Fig. 2, the
x axis denotes the column number, they axis stands for the
time t, and thez axis is the heighth. In this figure, every time
a new block is added, it ‘‘wets’’ all the sites at the same lev

FIG. 1. Growth of a heap with asymmetric long-range intera
tion. The numbers inside cells show the times at which the blo
are added to the heap.

FIG. 2. ~211!-dimensional ‘‘terraces’’ corresponding to th
growth of a heap in Fig. 1.
3-2
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to its ‘‘east’’ ~along thex axis! and to its ‘‘north’’ ~along the
time axis!. Here ‘‘wetting’’ means ‘‘screening’’ from further
deposition at those sites at the same level. This (211)-D
system of ‘‘terraces’’ is in one-to-one correspondence w
the ~111!-D heap in Fig. 1. This construction is reminisce
of the 3D anisotropic directed percolation~ADP! problem
studied by Rajesh and Dhar@20#. Note however, that unlike
the ADP problem, in our case each row labeled byt can
contain only one deposition event@23#.

The next step is to consider the projection onto the
(x,y) plane of the level lines separating the adjacent terra
whose heights differ by 1. In this projection, some of t
level lines may overlap partially on the plane. To avoid t
overlap for better visual purposes, we make a shift (x,y)
→@x1h(x,y),y# and represent these shifted directed lin
on the 2D plane in Fig. 3.

The black dots in Fig. 3 denote the points where the de
sition events took place and the integer next to a dot den
the time of this event. Note that each row in Fig. 3 conta
a single black dot, i.e., only one deposition per unit of tim
can occur. In Fig. 3, there are eight such events whose d
sition times form the sequence$1,2,3,4,5,6,7,8% of length n
58. Now let us read the deposition times of the dots sequ
tially, but now column by column and vertically from top t
bottom in each column, starting from the leftmost one. Th
this sequence reads$8,3,5,1,2,6,4,7% which is just a permuta-
tion of the original sequence$1,2,3,4,5,6,7,8%. In the per-
muted sequence$8,3,5,1,2,6,4,7% there are three LIS’s
$3,5,6,7%, $1,2,6,7%, and $1,2,4,7%, all of the same lengthl n
54. There is a greedy algorithm called the ‘‘patience so
ing’’ game devised by Aldous and Diaconis to determine t
length of the LIS@19#. This game goes as follows: start form
ing piles with the numbers in the permuted sequence star
with the first element which is 8 in our example. So, t
number 8 forms the base of the first pile. The next elemen
less than 8, goes on top of 8. If not, it forms the base o
new pile. One follows a greedy algorithm: for any new e
ment of the sequence, check all the top numbers on the
isting piles starting from the first pile and if the new numb
is less than the top number of an already existing pile, it g

FIG. 3. The directed lines are the level lines separating adja
terraces with height difference 1 in Fig. 2, projected onto the (x,y)
plane and shifted by (x,y)→@x1h(x,y),y# to avoid partial over-
lap. The black dots denote the deposition events. The numbers
to the dots denote the times of those deposition events.
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on top of that pile. If the new number is larger than all t
top numbers of the existing piles, this new number forms
base of a new pile. Thus in our example, we form four d
tinct piles:@$8,3,1%,$5,2%,$6,4%,$7%#. The number of piles~4! is
the same as the lengthl n54 of the LIS of this permuted
sequence. In fact, Aldous and Diaconis proved@19# that the
length of the LISl n is exactly equal to the number of piles i
the corresponding patience sorting game.

Let us note one immediate fact from Fig. 3. The numb
belonging to the different level lines in Fig. 3 are in one-t
one correspondence with the piles@$8,3,1%,$5,2%,$6,4%,$7%# in
Aldous-Diaconis patience sorting game. Hence, each pile
be identified with an unique level line. Now, the heig
h(x,t) at any given point (x,t) in Fig. 3 is equal to the
number of level lines inside the rectangle bounded by
corners: @0,0#,@x,0#,@0,t#,@x,t#. Thus, we have the corre
spondence height: number of level lines[number of piles
[length l n of the LIS. However, to computel n , we need to
know n which is the number of black dots inside this rec
angle.

Once the problem is reduced to finding the numb
of black dots or deposition events, we no longer need Fig
„as it may confuse due to the visual shift (x,y)→@x
1h(x,y),y#… and can go back to Fig. 2, where the north-t
east corners play the same role as the black dots in Fig. 2
Fig. 2, to determine the heighthk(t) of the kth column at
time t, we need to know the number of deposition eve
inside the 2D plane rectangleRk,t bounded by the four cor-
ners @0,0#,@k,0#,@0,t#,@k,t#. Let us begin with the last col-
umn k5L. For k5L the number of deposition events,n, in
the rectangleRL,t is equal to the timet because there is only
one deposition event per time. In our examplen5t58. For
a generalk,L the number of deposition events,n, inside the
rectangleRk,t is a random variable, since some of the row
inside the rectangle may not contain a north-to-east corne
a deposition event. The probability distributionPk,t(n) ~for a
given @k,t#) of this random variable can, however, be eas
found as follows. At each step of deposition, a column
chosen at random from any of theL columns. Thus, the
probability that a north-to-east corner will fall on the se
ment of line@0, k# ~wherek<L) is equal tok/L. The depo-
sition events are completely independent of each other, i
cating the absence of correlations between different ro
labeled byt in Fig. 2. So, we are asking the following que
tion: givent rows, what is the probability thatn of them will
contain a north-to-east corner? This is simply given by
binomial distribution

Pk,t~n!5S t
nD S k

L D nS 12
k

L D t2n

, ~4!

wheren<t. Now we are reduced to the following problem
given a sequence of integers of lengthn @wheren itself is
random and is taken from the distribution in Eq.~4!#, what is
the length of the LIS? Recall that this length is precisely
heighthk(t) of thekth column at timet in our model. In the
thermodynamic limitL→` for t@1 and any fixedk such
that the quotientl5tk/L remains fixed but is arbitrary, the
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distribution in Eq.~4! becomes a Poisson distributionP(n)
→e2l(ln/n!), with the meanl5(tk/L). We can then di-
rectly use the BDJ result in Eq.~2! to predict our main resul
for the height in the BD model,

hk~ t !→2Atk

L
1S tk

L D 1/6

x, ~5!

for large l5tk/L, where the random variablex has the
Tracy-Widom distribution. Using the known exact valu
^x&521.7711 . . . from the Tracy-Widom distribution@14#,
we find exactly the asymptotic average height profile in
BD model,

^hk~ t !&→2Atk

L
21.7711 . . . S tk

L D 1/6

. ~6!

The leading square root dependence of the profile on
column numberk has been seen numerically@22#. Equa-
tion ~6! also predicts an exact subleading term withk1/6

dependence. Similarly, for the variance,sk
2(t)5^@hk(t)

2^hk(t)&#2&, we find asymptotically:sk
2(t)→c0(tk/L)1/3,

wherec05^@x2^x&#2&50.8132 . . . @14#. Eliminating thet
dependence for larget between the average and the varian
we get, sk

2(t)'a^hk(t)&
2b, where the constanta5c0/22/3

50.51228 . . . andb51/3, thus recovering the KPZ scalin
exponent. In addition to the BD model with infinite rang
right-handed interaction reported here, we have also a
lyzed the model~analytically within a mean field theory an
numerically! when the right-handed interaction is sho
ranged@22#. Surprisingly, we found that the asymptotic a
erage height profile is independent of the range of interac
@22#.

So far, we have demonstrated that for a flat initial con
tion, the height fluctuations in the BD model follow th
Tracy-Widom distributionFGUE(x) which corresponds to the
distribution of the largest eigenvalue of a random mat
drawn from a Gaussian unitary ensemble. In the contex
the PNG model, Pra¨hofer and Spohn@11# have shown that
while the height fluctuations of a single PNG droplet follo
the distributionFGUE(x), it is possible to obtain other type
of universal distributions as well. For example, the heig
fluctuations in the PNG model growing over a flat substr
follow the distributionFGOE(x) whereFGOE(x) is the distri-
bution of the largest eigenvalue of a random matrix dra
from the Gaussian orthogonal ensemble~GOE!. Besides, in a
PNG droplet with two external sources at its edges wh
nucleate with ratesr1 andr2 , the height fluctuations hav
-

,

on
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different distributions depending on the values ofr1 and
r2 . For r1,1 andr2,1, one gets back the distributio
FGUE(x). If however r151 and r2,1 ~or alternatively
r251 andr1,1), one gets the distributionFGOE

2 (x) which
corresponds to the distribution of the largest of the super
posed eigenvalues of two independent GOE matrices. In
critical caser151 andr251, one gets a new distribution
F0(x) which does not have any random matrix analogy. F
r1.1 and r2.1, one gets Gaussian distribution. The
results for the PNG model were obtained in Ref.@11# using a
powerful theorem of Baik and Rains@24#.

The question naturally arises as to whether these o
distributions, apart from theFGUE(x), can also appear in the
BD model considered in this paper. Indeed, they do. F
example, if one starts with a staircase initial conditi
hk(0)5k for the heights in the BD model, one gets the d
tribution FGOE

2 (x) for the scaled variablex. This follows
from the fact that for the staircase initial condition, in Fig.
there will be a black dot~or a north-to-east corner! at every
value ofk on thek axis att50. Thus the black dots appea
on thek axis with unit density. This corresponds to the ca
r151 andr250 of the general results of Baik and Rain
which leads to aFGOE

2 (x) distribution. Of course, the densit
r1 can be tuned between 0 and 1, by tuning the aver
slope of the staircase. For a generic 0,r1<1, one can also
vary r2 by putting an external source at the first colum
Thus one can obtain, in principle, most of the distributio
discussed in Ref.@24# by varyingr1 andr2 . Note that the
caser251 ~external source which drops one particle at t
first column at every time step! andr150 ~flat substrate! is,
however, trivial since the surface then remains flat at
times and the height just increases by one unit at every t
step. The distributionFGOE(x) is, however, not naturally ac
cessible within the rules of our model.

In summary, we have shown that the asymptotic sca
height in an anisotropic~111!-D BD model has the Tracy-
Widom distribution. Our exact result, in combination wi
those of Refs.@11,15,16# where the same distribution wa
found in rather different growth models, suggests that
universality in all these growth processes is perhaps m
wider, extending to the full asymptotic height distributio
and not just restricted to the second moment of the heig
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