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Anisotropic ballistic deposition model with links to the Ulam problem
and the Tracy-Widom distribution
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We compute exactly the asymptotic distribution of scaled height(intdl)-dimensional anisotropic ballistic
deposition model by mapping it to the Ulam problem of finding the longest nondecreasing subsequence in a
random sequence of integers. Using the known results for the Ulam problem, we show that the scaled height
in our model has the Tracy-Widom distribution appearing in the theory of random matrices near the edges of
the spectrum. Our result supports the hypothesis that various growth modétsIindimensions that belong
to the Kardar-Parisi-Zhang universality class perhaps all share the same universal Tracy-Widom distribution for
the suitably scaled height variables.
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Growth processes are ubiquitous in nature. The past fewhe exact KPZ growth exponept=1/3) the exact asymptotic
decades have seen extensive research on a wide variety lefight distribution in the PNG mod¢l1]. This distribution
both discrete and continuous growth modgls-3|. A large  turned out to be the well known Tracy-Widom distribution
class of these growth models such as the Eden mi@gdel appearing in the theory of edge states of random matrices
restricted solid on solidRSOS models[5], directed poly- [14]. Around the same time, Johansson showed rigorously
mers[3], polynuclear growth modelPNG) [6] and ballistic  [15] that a specific(1+1)-D directed polymer model, be-
deposition(BD) models[7] are believed to belong to the lieved to be in the KPZ universality class, also has the same
same universality class as that of the Kardar-Parisi-Zhan@racy-Widom distribution for the scaled heiglenergy vari-
(KPZ) equation describing the growth of interface fluctua-able. Gravneet al. found the same Tracy-Widom distribu-
tions[8]. This universality is, however, somewhat restrictedtion in another class of1+1)-dimensional growth models
in the sense that it refers only to the width or the secondvhich they called “oriented digital boiling” model16]. It
moment of the height fluctuations characterized by two indewould be interesting to know whether other growth models
pendent exponentshe growth exponeng and the dynami- such as the RSOS or the BD ones, which are believed to be
cal exponentz) and the associated scaling function. More-in the KPZ universality class as far as the second moment is
over, even this restricted universality is established mostlyoncerned, also share the same Tracy-Widom distribution for
numerically. Only in very few special discrefe+1)-D mod-  the scaled height.
els, where D represents the dimension expongnt$/3 and The purpose of this paper is to present a BD model which
z=3/2 can be computed exactly via the Bethe ansatz techzan be mapped exactly to the LIS problem and hence shares
nique[9]. A natural and important question is whether thisthe same Tracy-Widom distribution as the PNG model. This
universality can be extended beyond the second moment @&Xxact result, in combination with the results of Refs.
height fluctuations. For example, is the full distribution of [11,15,16, then lends support to the hypothesis that perhaps
the height fluctuationgsuitably scaled universal, i.e., is it all these different growth models, at least(i+1) dimen-
the same for different growth models belonging to the KPZsions, share the same universal Tracy-Widom distribution for
class? Moreover, the KPZ-type equations are usually attribscaled height. This hypothesis, if true, puts the universality
uted to models with small gradients in the height profile andon a much stronger footing going beyond just the second
the question whether the models with large gradidsteh ~ moment. Incidentally, to our knowledge, our model is the
as the BD model)sbelong to the KPZ universality class is first exact solution for the full asymptotic height distribution
still open. The connection between the discrete BD modelsf BD-type systems.
and the continuum KPZ equation has recently been eluci- Before describing our model, it is worth summarizing the
dated in Ref[10]. main results for the LIS problem that we use later. Take a set

Recently Prhofer and Spohiill] found an exact map- of n integers{1,2,3...,n}. Consider all then! possible
ping between a specific PNG model and the so-called longegtermutations of this sequence. For any given permutation,
increasing subsequendklS) problem, also known as the let us find all possible increasing subsequengesms of
Ulam problem. The LIS problem was first raised by Ulam ina subsequence need not necessarily be consecutive elegments
the early 1960$12], then the interest in it reappeared in the and from them find out the longest one. For example,
mathematical literature in 1970s following the work of Ver- take n=10 and consider a particular permutation
shik and Kero\[13]. The exact mapping of PNG to LIS and {8,2,7,13,4,10,69,5}. From this sequence, one can form sev-
the subsequent utilization of the exact results available foeral increasing subsequences such {840, {2,3,4,10,
the LIS problem allowed Phafer and Spohn to finthesides {1,3,4,10, etc. The longest one of all such subsequences is
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either{1,3,4,6,9 as shown by the underscores{@r3,4,6,9.

The lengthl, of the LIS (in our exampld,,=5) is a random
variable as it varies from one permutation to another. In the
Ulam problem one considers all the permutations to be
equally likely. Given this uniform measure over the space of
permutations, what is the statistics of the random varigi{fle
Ulam found numerically for the average length,) the
asymptotic behavio(ln)~c\/ﬁ for largen. Later this result 4
was established rigorously by Hammers]&y] and the con-
stantc=2 was found by Vershik and Kerdi.3]. Recently, 2
in a seminal paper, Baik, Deift and Johansg&®DJ) [18] 31
derived the full distribution of,, for largen. In particular, O
they showed that,—2/n+n8y for largen, where the ran- 12 3 456 7 89
dom variabley has a limitingn-independent distribution,

v

height

FIG. 1. Growth of a heap with asymmetric long-range interac-
tion. The numbers inside cells show the times at which the blocks
Prol xy<X) =F gue(X), (1) are added to the heap.

which happens to be the Tracy W|dom_d|str|but|on for theThe model is anisotropic and evidently even the average
largest eigenvalue of a random matrix drawn from the_ . : .

. ; height profile(H,(t)) depends nontrivially on both the col-
Gaussian unitary ensemb(&UE) [14]. They also showed ; .

. . . umn numberk and timet. Our goal is to compute the
that when the sequence lengthitself is a random variable . : C
drawn from a Poisson distribution with me&n)=\, the asymptotic height distributiof? (M) for larget.
' It is easy to find the height distributioR,(H,t) of the

length of the LIS converges for largeto first column, since the height there does not depend on any
6 other column. At any stage, the height in the first column
'x_’Z\/XH\ ' 2 either increases by one unit with probabiljpy= 1/L (if this
column is selected for depopitr stays the same with prob-
where y has the Tracy-Widom distribution. The fixedand  ability 1—p. ThusP,(H,t) is simply the binomial distribu-
the fixed\ ensembles are like the canonical and the grandion, Pl(H,t)=(}4)ph(1—p)“H with H<t. The average
canonical ensembles in statistical mechanics. The detaiquleight of the first column thus increases(#k, (t))=pt for
form of the Tr'acy-Wid_om distribution is rathe_r complicated )| t and its variance is given byi(t)ztp(l— p). While the
and not very illuminatingsee Ref[14] for a picturg. The first column is thus trivial, the dynamics of heights in other
BDJ results led to an avalanche of subsequent mathematicghjymns is nontrivial due to the right-handed infinite range
works[19]. interactions between the columns. For convenience, we sub-
In our (1+1)-D BD model columnar growth occurs se- sequently measure the height of any other column with re-
guentially on a linear substrate consisting.ofolumns with spect to the first one. Namely, by heidhi(t) we mean the
free boundary conditions. The tinteis discrete and is in-  pejght difference between thé&+ 1) th column and the first
creased by 1 with every deposition event. We first conS|de5ne,hk(t): Hy.1(t)—H4(t), so thathy(t)=0 for all t.
the flat initial condition, i.e., an empty substrate tat0. To make progress for columns>0, we first consider a
Other initial conditions will be treated later. At any stage of (2+1)-D construction of the heap as shown in Fig. 2, by
the growth, a columrisay thekth column is chosen at ran-  4qding an extra dimension indicating the titén Fig. 2, the
dom with probability p=1/L and a “brick” is deposited y axijs denotes the column number, texis stands for the
there which increases the height of this column by one U”ittimet, and thez axis is the heighh. In this figure, every time

Hy—Hy+1. Once this brick is deposited, it screens all theg new plock is added, it “wets” all the sites at the same level
sites at the same level in all the columns to its right from

future deposition, i.e., the heights at all the columns to the
right of thekth column must be strictly greater than or equal
to H+1 at all subsequent times. For example, in Fig. 1, the
first brick (denoted by 1 gets deposited at=1 in the 4th }
column and it immediately screens all the sites to its right.
Then the second brickdenoted by P gets deposited ait

=2 again in the same 4th column whose height now be-
comes 2 and thus the heights of all the columns to the right
of the 4th column must be=2 at all subsequent times and so

on. Formally such growth is implemented by the following ! 1.'2 2”’ 3 ‘ 4 : 5 ° 6 ! 7 : 8 ‘ 9 X
update rule. If thekth site is chosen at timefor deposition, | ber k
then column number,

FIG. 2. (2+1)-dimensional “terraces” corresponding to the
H (t+1)=maxXxH,(t),H,_1(t), ... Hy(t)}+1. (3)  growth of a heap in Fig. 1.
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9 on top of that pile. If the new number is larger than all the
g 8 h=4 top numbers of the existing piles, this new number forms the
g base of a new pile. Thus in our example, we form four dis-
7 h=3 tinct piles:[{8,3,1{5,2},{6,4},{7}]. The number of pile4) is
6 6 the same as the lengiy=4 of the LIS of this permuted
5 | poe 5 sequence. In fact, Aldous and Diaconis proy&€l] that the
i length of the LIS, is exactly equal to the number of piles in
4 h=1 h=24 the corresponding patience sorting game.
3 3 Let us note one immediate fact from Fig. 3. The numbers
belonging to the different level lines in Fig. 3 are in one-to-
2 = one correspondence with the pilg8,3,1,{5,2,{6,4},{7}] in
4 | 1 Aldous-Diaconis patience sorting game. Hence, each pile can
1 2 3 4 5 6 7 8 9 10 11 be identified with an unique level line. Now, the height

h(x,t) at any given point X,t) in Fig. 3 is equal to the
FIG. 3. The directed lines are the level lines separating adjacerdumber of level lines inside the rectangle bounded by the
terraces with _height difference 1 in Fig. 2, projec_ted on_to the X corners:[0,0],[x,0],[0t],[x,t]. Thus, we have the corre-
plane and shifted byx(y) —[x+h(x,y),y] to avoid partial over-  ghongence height: number of level liresumber of piles
lap. The black dots denqte the deposition ev.e.nts. The numbers ne=|engthln of the LIS. However, to computk,, we need to
to the dots denote the times of those deposition events. know n which is the number of black dots inside this rect-
to its “east” (along thex axi9) and to its “north” (along the — angle.
time axig. Here “wetting” means “screening” from further Once the problem is reduced to finding the number
deposition at those sites at the same level. This {3-D  Of black dots or deposition events, we no longer need Fig. 3
system of “terraces” is in one-to-one correspondence with(@s it may confuse due to the visual shifky)—[x
the (1+1)-D heap in Fig. 1. This construction is reminiscent +h(x,y),y]) and can go back to Fig. 2, where the north-to-
of the 3D anisotropic directed percolatigADP) problem  €ast corners play the same role as the black dots in Fig. 2. In
studied by Rajesh and Dhg20]. Note however, that unlike Fig. 2, to determine the heigltt(t) of the kth column at
the ADP problem, in our case each row labeledtbyan timet, we need to know the number of deposition events
contain only one deposition evef3]. inside the 2D plane rectangk ; bounded by the four cor-
The next step is to consider the projection onto the 2Dners[0,0],[k,0],[0t],[k,t]. Let us begin with the last col-
(x,y) plane of the level lines separating the adjacent terracegmnk=L. Fork=L the number of deposition events, in
whose heights differ by 1. In this projection, some of thethe rectangleR,  is equal to the timé because there is only
level lines may overlap partially on the plane. To avoid theone deposition event per time. In our examplet=8. For
overlap for better visual purposes, we make a shifty]  agenerak<L the number of deposition events,inside the
—[x+h(x,y),y] and represent these shifted directed linesrectangleR, ; is a random variable, since some of the rows
on the 2D plane in Fig. 3. inside the rectangle may not contain a north-to-east corner or
The black dots in Fig. 3 denote the points where the depoa deposition event. The probability distributien ;(n) (for a
sition events took place and the integer next to a dot denotegiven[Kk,t]) of this random variable can, however, be easily
the time of this event. Note that each row in Fig. 3 containgound as follows. At each step of deposition, a column is
a single black dot, i.e., only one deposition per unit of timechosen at random from any of thHe columns. Thus, the
can occur. In Fig. 3, there are eight such events whose depg+obability that a north-to-east corner will fall on the seg-
sition times form the sequend&,2,3,4,5,6,7 Bof lengthn ment of line[ 0, k] (wherek=<L) is equal tok/L. The depo-
=8. Now let us read the deposition times of the dots sequersition events are completely independent of each other, indi-
tially, but now column by column and vertically from top to cating the absence of correlations between different rows
bottom in each column, starting from the leftmost one. Therlabeled byt in Fig. 2. So, we are asking the following ques-
this sequence read8,3,5,1,2,6,4,7which is just a permuta- tion: givent rows, what is the probability that of them will
tion of the original sequencél,2,3,4,5,6,7,8 In the per- contain a north-to-east corner? This is simply given by the
muted sequence8,3,5,1,2,6,4,7 there are three LIS's: binomial distribution
{3,5,6,%, {1,2,6,%, and{1,2,4,%, all of the same length,
=4. There is a greedy algorithm called the “patience sort- t\ [ Kk\D K\t—n
ing” game devised by Aldous and Diaconis to determine this Py(n)= ( n) (E) (1— E) , 4
length of the LIS 19]. This game goes as follows: start form-
ing piles with the numbers in the permuted sequence starting
with the first element which is 8 in our example. So, thewheren<t. Now we are reduced to the following problem:
number 8 forms the base of the first pile. The next element, ifiven a sequence of integers of lengthwheren itself is
less than 8, goes on top of 8. If not, it forms the base of aandom and is taken from the distribution in E4)], what is
new pile. One follows a greedy algorithm: for any new ele-the length of the LIS? Recall that this length is precisely the
ment of the sequence, check all the top numbers on the exeighth,(t) of the kth column at timet in our model. In the
isting piles starting from the first pile and if the new numberthermodynamic limitL—o for t>1 and any fixedk such
is less than the top number of an already existing pile, it goethat the quotienh =tk/L remains fixed but is arbitrary, the
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distribution in Eq.(4) becomes a Poisson distributié(n) different distributions depending on the values pof and
—e MA"n!), with the mean\=(tk/L). We can then di- p_. Forp,<1 andp_<1, one gets back the distribution
rectly use the BDJ result in EQ) to predict our main result Fg (x). If however p, =1 and p_<1 (or alternatively

for the height in the BD model, p_=1andp,<1), one gets the distributioRZ,(x) which
Ktk Ve corresponds to the distribution of the largest of the superim-
hy(t)—2 \ﬁ+ _) X, (5)  posed eigenvalues of two independent GOE matrices. In the
L L critical casep, =1 andp_=1, one gets a new distribution

for large A=tk/L, where the random variablg has the Fo(x) which does not have any random matrix analogy. For

Tracy-Widom distribution. Using the known exact value p+>1 andp_>1, one gets Gaussjan c!istribution'. These
(x)=—1.7711 . . . from the Tracy-Widom distributiofil4] results for the PNG model were obtained in Hé&fl] using a

we find exactly the asymptotic average height profile in thePOWerful theorem of Baik and Raing4].

BD model, The question naturally arises as to whether these other
distributions, apart from thE g g(x), can also appear in the
tk tk /6 BD model considered in this paper. Indeed, they do. For
<hk(t)>ﬂz\/g _1-77]1---(f) ' (6) example, if one starts with a staircase initial condition

h,(0)=k for the heights in the BD model, one gets the dis-
The leading square root dependence of the profile on thgibution F2o¢(x) for the scaled variabley. This follows
column numberk has been seen numericall2]. Equa-  from the fact that for the staircase initial condition, in Fig. 2
tion (6) also predicts an exact subleading term with®  there will be a black dotor a north-to-east corneat every
dependence. Similarly, for the variancey(t)=([hi(t)  value ofk on thek axis att=0. Thus the black dots appear
—(h(t))1%), we find asymptotically:o¢(t)—Co(tk/L)®,  on thek axis with unit density. This corresponds to the case
whereco=([x—(x)]*)=0.812 ... [14]. Eliminating thet ;. =1 andp_=0 of the general results of Baik and Rains
dependence for largebetween the average and the variance,yich leads to & 20¢(x) distribution. Of course, the density
we get, oy (t)~a(hy(t))?#, where the constara=co/2*® | " can be tuned between 0 and 1, by tuning the average
=0.51238 ... andB=1/3, thus recovering the KPZ scaling gjope of the staircase. For a generic f, <1, one can also
exponent. In _addmon_ to the BD model with infinite range vary p_ by putting an external source at the first column.
right-handed interaction reported here, we have also anarp;s one can obtain, in principle, most of the distributions
lyzed the mode{analytically within a mean field theory and giscussed in Ref24] by varyingp. andp_ . Note that the
numerically when the right-handed interaction is short casep_ =1 (external source which drops one particle at the
ranged[22]. Surprisingly, we found that the asymptotic av- fi;st column at every time st¢@ndp ., =0 (flat substratgis,
erage height profile is independent of the range of interactiopo\vever, trivial since the surface then remains flat at all
[22]. times and the height just increases by one unit at every time

_ So far, we have demc_mstra_ted that for a flat initial condi—step. The distributioff sog(X) is, however, not naturally ac-
tion, the height fluctuations in the BD model follow the .oqsible within the rules of our model.

Tracy-Widom distributiorF g g(x) which corresponds to the In summary, we have shown that the asymptotic scaled
distribution of the largest eigenvalue of a random matrixheight in an anisotropi€l+1)-D BD model has the Tracy-
drawn from a Gaussian unitary ensemble. In the context ofyigom distribution. Our exact result, in combination with
the PNG model, Ptofer and Spohii11] have shown that nqe of Refs[11,15,16 where the same distribution was
while the height fluctuations of a single PNG droplet follow t4,nq in rather different growth models, suggests that the
the distributionF gug(x), it is possible to obtain other types niversality in all these growth processes is perhaps much
of universal distributions as well. For example, the heightyjer, extending to the full asymptotic height distribution

fluctuations in the PNG model growing over a flat substrate;,q not just restricted to the second moment of the height.
follow the distributionF gog(X) whereF gog(X) is the distri-

bution of the largest eigenvalue of a random matrix drawn We acknowledge the hospitality of the Institut Henri Poin-
from the Gaussian orthogonal ensemifOF). Besides, ina carein Paris where this work was initiated during the trimes-
PNG droplet with two external sources at its edges whichter “Geometry and Statistics of Random Growth” in 2003.
nucleate with ratep, andp_, the height fluctuations have We also thank D. Dhar for useful discussions.
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